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1 Introduction

Audio has become an increasingly popular form of multimedia. Fast and available Internet

allows anyone to stream music to their devices or place of business. Hearing a new song

you like while on the go is now common. Fortunately, the rise of smartphones have lead

to mobile applications that can quickly and accurately identify an unknown song with

only a few seconds of audio. These applications use audio fingerprinting techniques to

create short compact summaries belonging to known audio sources. These summaries

have many uses, one of them being music identification. Other applications of audio

fingerprinting include copyright detection and broadcast monitoring.

In this report I cover how several audio fingerprinting algorithms and music iden-

tification systems work. I have also implemented a small program which demonstrates

identification using peak-pair hashing, a process I explain in detail.

2 Audio Fingerprinting

Audio fingerprints are compact signatures that summarize the audio signal they were

generated from. Some techniques of fingerprinting produce a single unique representation

of the audio. Others produce hundreds or thousands of small representations that when

looked at individually are not unique, but the collection uniquely corresponds to a single

audio source. An important property that all fingerprinting algorithms used for music

identification have, is that a fingerprint represents how humans hear the audio. The

binary representation is not directly looked at when analyzing the audio. A fingerprint is

not a hash of the audio file and a single bit flip or small distortion should not have a large

affect on the generated result. This is very important when analyzing audio generated

from a mobile phone in a public setting as noise or distortions are often introduced.
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3 Music Identification

Music identification is the process of using a database of fingerprints belonging to known

sources to identify a fingerprint belong to an unknown source. A database of fingerprints

is generated using any audio that should be identified. When an identification needs to

be made, the unknown audio sample is fingerprinted and used to query the database.

A match indicates that the unknown audio sample originated from the matching source

sample. This process can be see in Figure 1. A common application for music identifica-

tion algorithms is allowing a user to record a short amount of audio on their mobile device

and the source song is identified. Typically these applications require 5 - 15 seconds of

audio for accurate identification.

The audio used to create the fingerprint database is normally from high quality and

controlled sources with little to no imperfections. The audio source of the unknown

sample that needs to be identified is unknown and the sample is often noisy and full of

distortions.

Figure 1: Example music identification process [1]
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3.1 Requirements

Many music identification applications are deployed for use on mobile devices and will

be used in noisy environments such as coffee shops and restaurants. High quality audio

fingerprinting algorithms are robust to these distortions and at the same time respect the

memory and computational limitations of a users device. Additionally, the identification

process should take as short as possible, typically in the range of 10 ± 5 seconds.

3.2 Identification Pipeline

A general pipeline of mobile music identification is as follows

• Audio is captured on the users mobile device using the built-in microphone

• A fingerprint or set of fingerprints is generated on the device and sent to a matching

server

• The unknown fingerprint(s) is used to query a database of fingerprints that all

belong to know sources

• A matching step is performed on the results to select the most similar matches

• The best matched song is sent back to the users mobile device

3.3 Production Apps

Several apps that perform this identification are Shazam [3] and SoundHound [4].

4 Spectrograms

Spectrograms are a critical part of any audio fingerprinting algorithm. The algorithm

needs a digital representation of the audio as it is heard by humans and spectrograms

more closely represent this, especially compared to the raw binary representation.
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A spectrogram is a visual representation of the spectrum of frequencies of sound as

they vary with time. An example of a spectrogram of the song Kids by MGMT can be

seen in Figure 2.

Figure 2: Example of a spectrogram for the song Kids - MGMT

4.1 Short-Time Fourier Transform

The spectrogram is created by using the short-time Fourier Transform (STFT). STFT

takes overlapping windows of an audio signal in the time domain, and converts it to

frequency domain using the Fourier Transform. For discrete data this transform is rep-

resented as [5],

STFT{x[n]}(m,ω) ≡ X(m,ω) =
∞∑

n=−∞

x[n]w[n−m]e−jωn

where w[t] is the window function and x[t] is the signal to be transformed. The

Fast Fourier Transform (FFT) is typically used. The spectrogram is the square of the

magnitude of the STFT.
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spectrogram{x(t)}(τ, ω) ≡ |X(τ, ω)|2

4.1.1 STFT Parameters

Several parameters can be configured when generating the spectrogram. These are

• Window type

• Window length

• Overlap amount

• FFT length

The window type controls the window curve function, length controls the number of

samples that are used in a single FFT calculation, and overlap controls how much each

window overlap with the next. The FFT length controls the frequency resolution [6].

5 History

Music identification algorithms have been in development since the 90s but their popular-

ity has increased exponentially in the last 5 years due to an increased number of smart-

phones and processing power. Several different successful ideas have been explored [7].

5.1 Computer Vision for Music Identification

In 2005, Ke et al. [8] represented the audio as an image and used computer vision tech-

niques to create a unique fingerprint. The intuition in this algorithm is that a 1 dimen-

sional audio signal can be analyzed as a conventional 2 dimensional image when viewed

in the time-frequency spectrogram representation. The spectrogram is used to train a

machine learning model to learn compact audio descriptions with the goal that the proba-

bility that two noisy or distorted descriptions which were sampled from the same position

of the same song can be determined.
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Adaptive Boosting classifiers [9] are trained using box-filters on the spectrogram. The

output of the classifiers, a binary value, is concatenated and used as the fingerprint.

5.2 Waveprint: Efficient Wavelet-Based Audio Fingerprinting

A similar approach, in combination with data-stream processing techniques, was used by

Baluja and Covell in 2008 [10]. Instead of a machine learning approach, Waveprint, uses

wavelets to extract features from the audio spectrogram. Wavelets are a “mathematical

tool for hierarchically decomposing functions” [10]. Their approach is as follows

1. Divide the spectrogram of an audio sample into smaller spectral images

2. Compute the wavelets on the spectral images

3. Extract the top wavelets, measured by magnitude

4. Create a binary representation of the top wavelets using their sign

In order to allow efficient nearest-neighbour indexing, Min-Hash [11] is used to create a

more compact representation of the binary output. The result is a set of p bytes (typically

> 100) that can be directly compared by computing the Hamming distance. In an analysis

by Chandrasekhar et al. [7], this wavelet based approach to music identification performed

the most accurately for 5, 10, and 15 second queries achieving > 90% accuracy after a

temporal alignment step. However, this process requires significantly more memory and

computational resources than the other methods for computing the fingerprints.

5.3 An Industrial-Strength Audio Search Algorithm

In 2003, Avery Wang, released a paper [2] detailing Shazam’s ingenious approach to

music fingerprinting. The algorithm only looks at high energy peaks in the spectrogram.

Peaks are more likely to survive ambient noise as a peak analysis of music and noise

together will contain spectral peaks due to the music and noise as if they were analyzed

separately. Pairs of peaks are used as fingerprints for an audio sample, of which there

can be thousands.
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It is this algorithm I implemented for my project and will go into greater detail below.

5.4 Robust Audio Fingerprinting Using Peak-Pair-Based Hash

of Non-Repeating Foreground Audio in a Real Environment

In 2016, Kim et al. [12], improved upon Wang’s peak-pair algorithm by extracting non-

repeating foreground audio from background audio. Background audio, for example, in an

unknown audio sample would be the background chatter at a coffee shop. A modulated

complex lapped transform (MCLT) is used instead of STFT to convert the 1D audio

signal into a format suitable for peak extraction. Adaptive temporal thresholding is then

applied to the high energy peaks computed from the MCLT spectrogram. Finally, pairs

of nearby peaks are combined into a 32-bit fingerprint hash. This process can be seen in

Figure 3. This algorithm is more robust to noise and echo conditions than the original

one proposed by Wang.

Figure 3: An improvement to Shazam’s original peak-pair hashing identification algo-
rithm
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6 Implementation

For this project I have built a small program which demonstrates using peak-pair hashing

for fingerprint generation and music identification. I make heavy use of the Numpy [13]

and SciPy [14] Python libraries.

6.1 Architecture

The architecture of my implementation closely follows the music identification process

explained above. However, instead of the unknown audio coming from a mobile device,

it is captured through my computer speakers using a microphone. Capturing the audio

through the microphone allows me to introduce artificial noise. This more closely rep-

resents a real-world application compared to using segments of the audio files that were

used to create the fingerprint database. The architecture of the program can be seen in

Figure 4.

Figure 4: Architecture of demo program
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6.2 Spectrogram Creation

To create the spectrogram I useed a Hamming window function with 1024 samples per

window. The windows overlapped by 50% and I used 1024 bins for the FFT input. The

spectrogram generated with these parameters can be seen in Figure 2.

6.3 Constellation Maps

Time-frequency peaks are found using an image local maxima filter with a neighbourhood

of 15 pixels. Pixels corresponds to milliseconds in the time domain and hertz in the

frequency domain. In Wang’s original paper [2], the spectrogram peaks can be plotted

to create a “constellation map”. The constellation map for the song Kids by MGMT can

be seen in Figure 5

Figure 5: Constellation map of Kids - MGMT

The total number of peaks found depends on the song length and the amount of

energy in the song. Generally, more upbeat and dance-y songs will have more peaks in

them. In Figure 5 there were 14425 peaks found.
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6.4 Finding Pairs

Pairs are found by looking at each peak and the closest 15 neighbouring peaks within

200 seconds. In Figure 5 there were 8514 pairs.

Figure 6: Finding pairs in a constellation map [2]

6.5 Creating Hashes

A fingerprint hash is create for each pair of peaks. It should be noted that these are

not cryptographic hashes. Each hash is composed of the frequency of the first point, the

frequency of the second point, and the difference in times. The hash is combined with

the time offset of the first point, as it will be used in the fingerprinting aligning step, to

create a single fingerprint.

In Wangs paper, each fingerprint was a 32 bit integer as this was a convenient way to

store them.
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Figure 7: Creating a fingerprint from a peak-pair [2]

6.6 Database

Storing the fingerprints that belong to known audio sources is a critical step in a pro-

duction music identification system. Fingerprints for potentially millions of songs need

to be efficiently stored and indexed for fast lookup. In my implementation speed was

not required, so I used a simple PostgreSQL database with a table that held information

about each source song, and a table that held information about each fingerprint. Each

fingerprint holds a relationship to its source song.

6.7 Identification

Unknown audio samples that need to be identified are first fingerprint in the same process

as above. The set of fingerprints generated is used to query the database and matching

fingerprints are retrieved.
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6.7.1 Fingerprint Alignment

A naive approach to selecting the best matching source song could be to select the song

with the highest number of matching fingerprints. However, this does not take into

account the order in which the fingerprints occured. We cannot know the time offset

the unknown audio started recording at, but we do know the order and time offsets

that the fingerprints occured relative to each other. This information is used to find

matched fingerprints that occur successively after each other in with the same relative

offsets. This is computed by simply subtracting the time offsets originating from the

known fingerprints by the time offsets originating from the unknown fingerprints. This

can be visually seen in Figure 8, where a diagonal is present when looking at the matching

fingerprint time offsets. A peak in the histogram of time differences indicates a matching

song.

Figure 8: Aligning fingerprints by analyzing fingerprint time offsets [2]
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6.8 Results

Music identification systems are notoriously hard to measure and test. The accuracy

of the system is affect by the length of the query audio, the offset from which the au-

dio started from, the quality of the query microphone, the quality of the source songs,

and the content of the songs. For this reason there is no standardized way to compare

identification algorithms.

For my implementation I performed manual testing using a database of 87 songs with

591094 fingerprints belonging to all these songs. The source audio is all 320 Kbps MP3

files with a 44000 Hz sample rate and I choose songs from a variety of genres. The queried

audio is recorded using a standard webcam microphone positioned 5 feet away from the

output speaker. I queried 30 songs recorded at 5, 8, and 10 seconds and started recording

at random times in the song. The results can be seen in Figure 9.

Figure 9: Accuracy Identifying 5, 8, and 10 seconds of audio over 30 trials

This test is far from robust but shows that the algorithm works. When 10 seconds of
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audio is queried, mis-identifications are normally due to the audio being recorded from a

very quiet or uncommon part of the song.

7 Conclusion

Audio fingerprinting algorithms create compact signatures of an audio signal that repre-

sent how humans hear it. Fingerprints can be used in a music identification service, which

stores large amount of fingerprints in a database, to identify the source of an unknown

sample. Several techniques of music identification have been researched including using

computer vision, wavelets, and peak-pair hashing. The demo program I created used a

simplified version of the original Shazam’s algorithm, but was able to correctly identify

the source song with 96% accuracy using 10 second query samples.
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